
Package: extrasteps (via r-universe)
November 3, 2024

Title More Miscellaneous Steps for the 'recipes' Package

Version 0.1.0.9000

Description Contains additional miscellaneous steps for the 'recipes'
package. These steps are useful, but doesn't have a good home
in other 'recipes' packages or its extensions.

License MIT + file LICENSE

URL https://github.com/EmilHvitfeldt/extrasteps,

https://emilhvitfeldt.github.io/extrasteps/

BugReports https://github.com/EmilHvitfeldt/extrasteps/issues

Depends R (>= 3.6), recipes (>= 1.0.7)

Imports dplyr, generics, magrittr, purrr, rlang, tibble, vctrs

Suggests almanac, ggplot2, modeldata, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://emilhvitfeldt.r-universe.dev

RemoteUrl https://github.com/emilhvitfeldt/extrasteps

RemoteRef HEAD

RemoteSha 0314998ba9978cf18efe4a93d3e832036ae56649

Contents
step_date_after . 2
step_date_before . 5
step_date_nearest . 7
step_difftime . 10
step_encoding_binary . 11

1

https://github.com/EmilHvitfeldt/extrasteps
https://emilhvitfeldt.github.io/extrasteps/
https://github.com/EmilHvitfeldt/extrasteps/issues

2 step_date_after

step_encoding_frequency . 13
step_maxabs . 14
step_minmax . 15
step_robust . 16
step_time_event . 18
step_unit_normalize . 20

Index 22

step_date_after Time after Recurrent Date Time Event

Description

step_date_after() creates a specification of a recipe step that will create new columns indicating
the time after an recurrent event.

Usage

step_date_after(
recipe,
...,
role = "predictor",
trained = FALSE,
rules = list(),
transform = "identity",
columns = NULL,
skip = FALSE,
id = rand_id("date_after")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

rules Named list of almanac rules.

transform A function or character indication a function used oon the resulting variables.
See details for allowed names and their functions.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep.recipe() is used.

step_date_after 3

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The transform argument can be function that takes a numeric vector and returns a numeric vector
of the same length. It can also be a character vector, below is the supported vector names. Some
functions come with offset to avoid Inf.

"identity"
function(x) x

"inverse"
function(x) 1 / (x + 0.5)

"exp"
function(x) exp(x)

"log"
function(x) log(x + 0.5)

The effect of transform is illustrated below.

4 step_date_after

The naming of the resulting variables will be on the form

{variable name}_after_{name of rule}

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Examples

library(recipes)
library(extrasteps)
library(almanac)
library(modeldata)

data(Chicago)

on_easter <- yearly() %>% recur_on_easter()
on_weekend <- weekly() %>% recur_on_weekends()

rules <- list(easter = on_easter, weekend = on_weekend)

rec_spec <- recipe(ridership ~ date, data = Chicago) %>%
step_date_after(date, rules = rules)

rec_spec_preped <- prep(rec_spec)

step_date_before 5

bake(rec_spec_preped, new_data = NULL)

step_date_before Time before Recurrent Date Time Event

Description

step_date_before() creates a specification of a recipe step that will create new columns indicat-
ing the time before an recurrent event.

Usage

step_date_before(
recipe,
...,
role = "predictor",
trained = FALSE,
rules = list(),
transform = "identity",
columns = NULL,
skip = FALSE,
id = rand_id("date_before")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

rules Named list of almanac rules.

transform A function or character indication a function used oon the resulting variables.
See details for allowed names and their functions.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep.recipe() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

6 step_date_before

Details

The transform argument can be function that takes a numeric vector and returns a numeric vector
of the same length. It can also be a character vector, below is the supported vector names. Some
functions come with offset to avoid Inf.

"identity"
function(x) x

"inverse"
function(x) 1 / (x + 0.5)

"exp"
function(x) exp(x)

"log"
function(x) log(x + 0.5)

The effect of transform is illustrated below.

The naming of the resulting variables will be on the form

{variable name}_before_{name of rule}

step_date_nearest 7

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Examples

library(recipes)
library(extrasteps)
library(almanac)
library(modeldata)

data(Chicago)

on_easter <- yearly() %>% recur_on_easter()
on_weekend <- weekly() %>% recur_on_weekends()

rules <- list(easter = on_easter, weekend = on_weekend)

rec_spec <- recipe(ridership ~ date, data = Chicago) %>%
step_date_before(date, rules = rules)

rec_spec_preped <- prep(rec_spec)

bake(rec_spec_preped, new_data = NULL)

step_date_nearest Time to Nearest Recurrent Date Time Event

Description

step_date_nearest() creates a specification of a recipe step that will create new columns indi-
cating the time to nearest recurrent event.

Usage

step_date_nearest(
recipe,
...,
role = "predictor",
trained = FALSE,
rules = list(),
transform = "identity",
columns = NULL,
skip = FALSE,
id = rand_id("date_nearest")

)

8 step_date_nearest

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

rules Named list of almanac rules.

transform A function or character indication a function used oon the resulting variables.
See details for allowed names and their functions.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep.recipe() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The transform argument can be function that takes a numeric vector and returns a numeric vector
of the same length. It can also be a character vector, below is the supported vector names. Some
functions come with offset to avoid Inf.

"identity"
function(x) x

"inverse"
function(x) 1 / (x + 0.5)

"exp"
function(x) exp(x)

"log"
function(x) log(x + 0.5)

The effect of transform is illustrated below.

step_date_nearest 9

The naming of the resulting variables will be on the form

{variable name}_nearest_{name of rule}

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Examples

library(recipes)
library(extrasteps)
library(almanac)
library(modeldata)

data(Chicago)

on_easter <- yearly() %>% recur_on_easter()
on_weekend <- weekly() %>% recur_on_weekends()

rules <- list(easter = on_easter, weekend = on_weekend)

rec_spec <- recipe(ridership ~ date, data = Chicago) %>%
step_date_nearest(date, rules = rules)

rec_spec_preped <- prep(rec_spec)

10 step_difftime

bake(rec_spec_preped, new_data = NULL)

step_difftime difftimearithmic Transformation

Description

step_difftime() creates a specification of a recipe step that will calculate difftimes of the data.

Usage

step_difftime(
recipe,
...,
role = NA,
trained = FALSE,
time = NULL,
tz = NULL,
unit = "auto",
columns = NULL,
skip = FALSE,
id = rand_id("difftime")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
time date-time or date objects. Used for reference. Must match the type of variable.
tz an optional time zone specification to be used for the conversion, mainly for

"POSIXlt" objects.
unit character string. Units in which the results are desired. Must be one of "auto",

"secs", "mins", "hours","days", and "weeks" Defaults to "auto".
columns A character string of variable names that will be populated (eventually) by the

terms argument.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_encoding_binary 11

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Examples

library(recipes)
example_date <- data.frame(

dates = seq(as.Date("2010/1/1"), as.Date("2016/1/1"), by = "quarter")
)

example_datetime <- data.frame(
datetimes = seq(ISOdate(1993,1,1), ISOdate(1993,1,2), by = "hour")
)

rec <- recipe(~ dates, data = example_date) %>%
step_difftime(dates, time = as.Date("2010/1/1"))

difftime_obj <- prep(rec)

bake(difftime_obj, new_data = NULL)

recipe(~ dates, data = example_date) %>%
step_difftime(dates, time = as.Date("2010/1/1"), unit = "weeks") %>%
prep() %>%
bake(new_data = NULL)

recipe(~ datetimes, data = example_datetime) %>%
step_difftime(datetimes, time = ISOdate(1993,1,1), unit = "secs") %>%
prep() %>%
bake(new_data = NULL)

step_encoding_binary Perform binary encoding of factor variables

Description

step_encoding_binary() creates a specification of a recipe step that will perform binary encoding
of factor variables.

Usage

step_encoding_binary(
recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,

12 step_encoding_binary

keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("encoding_binary")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

res A list containing levels of training variables is stored here once this preprocess-
ing step has be trained by recipes::prep().

columns A character string of variable names that will be populated (eventually) by the
terms argument.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Examples

library(recipes)
library(modeldata)

data(ames)

rec <- recipe(~ Land_Contour + Neighborhood, data = ames) %>%
step_encoding_binary(all_nominal_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

step_encoding_frequency 13

step_encoding_frequency

Perform frequency encoding

Description

step_encoding_frequency() creates a specification of a recipe step that will perform frequency
encoding.

Usage

step_encoding_frequency(
recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("encoding_frequency")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
res A list frequencies of the levels of the training variables is stored here once this

preprocessing step has be trained by recipes::prep().
columns A character string of variable names that will be populated (eventually) by the

terms argument.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

14 step_maxabs

Examples

library(recipes)
library(modeldata)

data(ames)

rec <- recipe(~ Land_Contour + Neighborhood, data = ames) %>%
step_encoding_frequency(all_nominal_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

step_maxabs Perform Max Abs Scaling

Description

step_maxabs() creates a specification of a recipe step that will perform Max Abs scaling.

Usage

step_maxabs(
recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("maxabs")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

res A list containing absolute max of training variables is stored here once this pre-
processing step has be trained by recipes::prep().

step_minmax 15

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Examples

library(recipes)

rec <- recipe(~., data = mtcars) %>%
step_maxabs(all_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

step_minmax Perform Min Max Scaling

Description

step_minmax() creates a specification of a recipe step that will perform Min Max scaling.

Usage

step_minmax(
recipe,
...,
role = NA,
trained = FALSE,
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("minmax")

)

16 step_robust

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

res A list containing min and max of training variables is stored here once this pre-
processing step has be trained by recipes::prep().

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Examples

library(recipes)

rec <- recipe(~., data = mtcars) %>%
step_minmax(all_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

step_robust Perform Robust Scaling

Description

step_robust() creates a specification of a recipe step that will perform Robust scaling.

step_robust 17

Usage

step_robust(
recipe,
...,
role = NA,
trained = FALSE,
range = c(0.25, 0.75),
res = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("robust")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

range A numeric vector with 2 values denoting the lower and upper quantile that is
used for scaling. Defaults to c(0.25, 0.75).

res A list containing the 3 quantiles of training variables is stored here once this
preprocessing step has be trained by recipes::prep().

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The scaling performed by this step is done using the following transformation

xnew = (x−Q2(x))/(Q3(x)−Q1(x))

where Q2(x) is the median, Q3(x) is the upper quantile (defaults to 0.75) and Q1(x) is the lower
quantile (defaults to 0.25). The upper and lower quantiles can be changed with the range argument.

18 step_time_event

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

Examples

library(recipes)

rec <- recipe(~., data = mtcars) %>%
step_robust(all_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

rec <- recipe(~., data = mtcars) %>%
step_robust(all_predictors(), range = c(0.1, 0.9)) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

step_time_event Indicate Recurrent Date Time Event

Description

step_time_event() creates a specification of a recipe step that will create new columns indicating
if the date fall on recurrent event.

Usage

step_time_event(
recipe,
...,
role = "predictor",
trained = FALSE,
rules = list(),
columns = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("time_event")

)

step_time_event 19

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
rules Named list of almanac rules.
columns A character string of variables that will be used as inputs. This field is a place-

holder and will be populated once recipes::prep.recipe() is used.
keep_original_cols

A logical to keep the original variables in the output. Defaults to TRUE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Unlike some other steps step_time_event does not remove the original date variables by default.
Set keep_original_cols to FALSE to remove them.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Examples

library(recipes)
library(extrasteps)
library(almanac)
library(modeldata)

data(Chicago)

on_easter <- yearly() %>% recur_on_easter()
on_weekend <- weekly() %>% recur_on_weekends()

rules <- list(easter = on_easter, weekend = on_weekend)

rec_spec <- recipe(ridership ~ date, data = Chicago) %>%
step_time_event(date, rules = rules)

rec_spec_preped <- prep(rec_spec)

bake(rec_spec_preped, new_data = NULL)

20 step_unit_normalize

step_unit_normalize Perform Unit Normalization

Description

step_unit_normalize() creates a specification of a recipe step that will perform unit normaliza-
tion by scaling individual samples to have unit norm.

Usage

step_unit_normalize(
recipe,
...,
role = NA,
trained = FALSE,
norm = c("l2", "l1", "max"),
columns = NULL,
skip = FALSE,
id = rand_id("unit_normalize")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details. For the tidy method,
these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

norm Character denoting which type of normalization to perform. Must be one of
"l1", "l2", or ""max".

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the columns that will be affected) and base.

step_unit_normalize 21

Examples

library(recipes)

rec <- recipe(~., data = mtcars) %>%
step_unit_normalize(all_predictors()) %>%
prep()

rec %>%
bake(new_data = NULL)

tidy(rec, 1)

Index

bake(), 3, 5, 8, 10, 12, 13, 15–17, 19, 20

prep(), 3, 5, 8, 10, 12, 13, 15–17, 19, 20

recipes::prep(), 12–14, 16, 17
recipes::prep.recipe(), 2, 5, 8, 19
recipes::selections(), 10, 12–14, 16, 17,

20

selections(), 2, 5, 8, 19
step_date_after, 2
step_date_before, 5
step_date_nearest, 7
step_difftime, 10
step_encoding_binary, 11
step_encoding_frequency, 13
step_maxabs, 14
step_minmax, 15
step_robust, 16
step_time_event, 18
step_unit_normalize, 20

tidy.step_date_after (step_date_after),
2

tidy.step_date_before
(step_date_before), 5

tidy.step_date_nearest
(step_date_nearest), 7

tidy.step_difftime (step_difftime), 10
tidy.step_encoding_binary

(step_encoding_binary), 11
tidy.step_encoding_frequency

(step_encoding_frequency), 13
tidy.step_maxabs (step_maxabs), 14
tidy.step_minmax (step_minmax), 15
tidy.step_robust (step_robust), 16
tidy.step_time_event (step_time_event),

18
tidy.step_unit_normalize

(step_unit_normalize), 20

22

	step_date_after
	step_date_before
	step_date_nearest
	step_difftime
	step_encoding_binary
	step_encoding_frequency
	step_maxabs
	step_minmax
	step_robust
	step_time_event
	step_unit_normalize
	Index

